Evaluation of developed low-density genotype panels for imputation to higher density in independent dairy and beef cattle populations.

نویسندگان

  • M M Judge
  • J F Kearney
  • M C McClure
  • R D Sleator
  • D P Berry
چکیده

The objective of this study was to develop, using alternative algorithms, low-density SNP genotyping panels (384 to 12,000 SNP), which can be accurately imputed to higher-density panels across independent cattle populations. Single nucleotide polymorphisms were selected based on genomic characteristics (i.e., linkage disequilibrium [LD], minor allele frequency [MAF], and genomic distance) in a population of 1,267 Holstein-Friesian animals genotyped on the Illumina Bovine50 Beadchip (54,001 SNP). Single nucleotide polymorphism selection methods included 1) random; 2) equidistant location; 3) combination of SNP MAF and LD structure while maintaining relatively equal genomic distance between adjacent SNP; 4) a combination of high MAF, genomic distance between selected and candidate SNP, and correlation between genotypes of selected and candidate SNP; and 5) a machine learning algorithm. The panels were validated separately in 1) a population of 750 Holstein-Friesian animals with masked genotypes to reflect the lower-density SNP densities under investigation (1,249 animals with complete genotypes included in reference population) and 2) a population of 359 Limousin and Charolais cattle with high (777,962 SNP)-density genotypes (1,918 animals with complete genotypes included in the reference population). Irrespective of SNP selection method, imputation accuracy in both populations improved at a diminishing rate as the number of SNP included in the lower-density genotype panel increased. Additionally, the variability in mean imputation accuracy per individual decreased as the panel density increased. The SNP selection method had a major impact on the mean allele concordance rate, although its impact diminished as the panel density increased. Imputation accuracy for SNP selected using a combination of high SNP MAF, LD structure, and relatively equal genomic distance between SNP outperformed all other selection methods in densities < 12,000 SNP. Using this method of SNP selection, the correlation between the imputed and actual genotypes for the 3,000 SNP panel was 0.90 and 0.96 when applied to the beef and dairy populations, respectively; the respective correlations for the 6,000 SNP panel were 0.95 and 0.98. It is necessary to include between 3,000 and 6,000 SNP in a low-density panel to achieve adequate imputation accuracy to either medium density (approximately 50,000 SNP in the dairy population) or high density (approximately 700,000 SNP in the beef population) across diverse and independent populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of genotype imputation accuracy using reference populations with varying degrees of relationship and marker density panel

Genotype imputation from low-density to high-density (SNP) chips is an important step before applying genomic selection, because denser chips can provide more reliable genomic predictions. In the current research, the accuracy of genotype imputation from low and moderate-density panels (5K and 50K) to high-density panels in the purebred and crossbred populations was assessed. The simulated popu...

متن کامل

Imputation of parent-offspring trios and their effect on accuracy of genomic prediction using Bayesian method

The objective of this study was to evaluate the imputation accuracy of parent-offspring trios under different scenarios. By using simulated datasets, the performance Bayesian LASSO in genomic prediction was also examined. The genome consisted of 5 chromosomes and each chromosome was set as 1 Morgan length. The number of SNPs per chromosome was 10000. One hundred QTLs were randomly distributed a...

متن کامل

Design of a Bovine Low-Density SNP Array Optimized for Imputation

The Illumina BovineLD BeadChip was designed to support imputation to higher density genotypes in dairy and beef breeds by including single-nucleotide polymorphisms (SNPs) that had a high minor allele frequency as well as uniform spacing across the genome except at the ends of the chromosome where densities were increased. The chip also includes SNPs on the Y chromosome and mitochondrial DNA loc...

متن کامل

Across- and Within-breed Imputation across Several Genotyping Densities in Dairy and Beef Cattle

Illumina high density genotypes (777,962 SNPs) were available on 3,122 dairy and beef bulls. Animals were partitioned into either a calibration or validation dataset to test the accuracy of imputation. All animals, irrespective of breed, born after 2005 (n=698) were assumed to represent the validation bulls. The high density genotypes were masked in the validation animals to represent a low den...

متن کامل

Effect of Reference Population Size and Imputation Methods on the Accuracy of Imputation in Pure and Mixed Populations

    Imputation as a method of creating low-density chips to high-density chips has been introduced to increase the accuracy of genomic selection in animals. In the current study, to investing imputation accuracy, three populations of mixed (scenario 1), pure (scenario 2) and mixed + pure (scenario 3) were simulated using QMSim. Two methods of imputation including Beagle and Flmpute were used fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of animal science

دوره 94 3  شماره 

صفحات  -

تاریخ انتشار 2016